Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner
نویسندگان
چکیده
BACKGROUND The small intestinal epithelium is highly sensitive to radiation and is a major site of injury during radiation therapy and environmental overexposure. OBJECTIVE To examine probiotic bacteria as potential radioprotective agents in the intestine. METHODS 8-week-old C57BL/6 wild-type or knockout mice were administered probiotic by gavage for 3 days before 12 Gy whole body radiation. The intestine was evaluated for cell-positional apoptosis (6 h) and crypt survival (84 h). RESULTS Gavage of 5×10⁷ Lactobacillus rhamnosus GG (LGG) improved crypt survival about twofold (p<0.01); the effect was observed when administered before, but not after, radiation. Conditioned medium (CM) from LGG improved crypt survival (1.95-fold, p<0.01), and both LGG and LGG-CM reduced epithelial apoptosis particularly at the crypt base (33% to 18%, p<0.01). LGG was detected in the distal ileal contents after the gavage cycle, but did not lead to a detectable shift in bacterial family composition. The reduction in epithelial apoptosis and improved crypt survival offered by LGG was lost in MyD88⁻/⁻, TLR-2⁻/⁻ and cyclo-oxygenase-2⁻/⁻ (COX-2) mice but not TLR-4⁻/⁻ mice. LGG administration did not lead to increased jejunal COX-2 mRNA or prostaglandin E2 levels or a change in number of COX-2-expressing cells. However, a location shift was observed in constitutively COX-2-expressing cells of the lamina propria from the villi to a position near the crypt base (villi to crypt ratio 80:20 for control and 62:38 for LGG; p<0.001). Co-staining revealed these COX-2-expressing small intestinal lamina propria cells to be mesenchymal stem cells. CONCLUSIONS LGG or its CM reduce radiation-induced epithelial injury and improve crypt survival. A TLR-2/MyD88 signalling mechanism leading to repositioning of constitutive COX-2-expressing mesenchymal stem cells to the crypt base is invoked.
منابع مشابه
Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis.
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of neonates, and clinical studies suggest the beneficial effect of probiotics in NEC prevention. Recently, we have shown that administration of Bifidobacterium bifidum protects against NEC in a rat model. Intestinal apoptosis can be suppressed by activation of cyclooxygenase-2 (COX-2) and increased production of prostaglandin E...
متن کاملLactobacillus rhamnosus GG and Bifidobacterium longum Attenuate Lung Injury and Inflammatory Response in Experimental Sepsis
INTRODUCTION Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well exp...
متن کاملSurvival of Lactobacillus Acidophilus as Probiotic Bacteria using Chitosan Nanoparticles
Chitosan was used for nanoencapsulation of Lactobacillus acidophilus as probiotic bacteria. In vitro experiments were done with the objective of investigating the survival of the bacteria cells in gastro-intestinal conditions. The results demonstrated that the size of chitosan nanoparticles noticeably increases by increasing chitosan concentration from 0.05 to 0.5 g/mL. Encapsulation of the cel...
متن کاملThe probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity.
The mechanisms by which probiotic bacteria affect the immune system are unknown yet, but many of them are attributed to an increase in the innate or in the acquired immune response. To study the influence of the probiotic bacterium Lactobacillus casei in the expression of receptors involved in the innate immune response, this bacterium was orally administered to BALB/c mice. After, they were sa...
متن کاملSoluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells.
Conditioned media from the probiotic Lactobacillus GG (LGG-CM) induce heat shock protein (Hsp) expression in intestinal epithelial cells. LGG-CM induces both Hsp25 and Hsp72 in a time- and concentration-dependent manner. These effects are mediated by a low-molecular-weight peptide that is acid and heat stable. DNA microarray experiments demonstrate that Hsp72 is one of the most highly upregulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012